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algebraic concepts. It considers how the concept of function can be
made a central theme of the algebra curriculum and further suggests
that computer software, when designed properly and used with
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students in significant mathematical inquiry. After a discussion of
the multiple representations of the concept of function, several
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Some lessons learned from cognitive research invol:ing students'
interactions with a variety of graphically based software
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are presented; they are: "The Function Supposer"; "The Function
Comparator"; and "The Function Analyzer." Examples of classroom
materials developed to engage students in problem-solving and
problem-finding activities and to take advantage of new opportunities
for learning and teaching made available by the new computer software
are presented. Finally, new direction' in software environments
beyond visualization are explored. One of these, a tool called
"controlled dynamic phenomena" is described as an appLoach that will
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Improving the Teaching and Learning of Algebra
Using a Visual Approach

Rethinking Algebra in Secondary Mathematics Education

Wayne Harvey

This paper considers how the algebra curriculum in secondary
mathematics might be reformulated by rethinking both the content
of algebra and the approaches to teaching and learning algebraic
concepts. The author considers how the concept of function can be
made a central theme of the algebra curriculum and further suggests
that computer software, when designed properly and used with
appropriate materials, can provide an opportunity for engaging
students in significant mathematical inquiry.

Igebra is a central focus in the secondary mathematics curriculum as it is
currently structured. For many students, their first year of algebra is also their

last year of mathematics. For those students who do continue, geometry often is cast
as a kind of interlude between algebra 1 and algebra 2a break from the routine, and
one that is not destined to ?lay much of a role in the courses that follow. The second
year of algebra is partly a refurbishing of algebra 1 skills that have remained unused
for a year, supplemented with greater emphasis on graphs of higher-order polynomials
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and transformations on these graphs (transla-
tions and dilations). Other topics, which vary
from text to text, often include preparations for
a second preparation (precalcul us) before calcu-
lus.

Despite its position as the central thread in the
mathematics curriculum, little in the way of an
organizing idea behind the algebra curriculum is
apparent to students or teachers. The lack of an
organizing idea leads many to talk about the
algebra curriculum as a list of skills to be learned,
almost as if they were reciting the chapters in a
typical algebra textbook. To students, and often
enough to teachers as well, the algebra curricu-
lum has no internal coherenceit appears as a
collection of techniques for manipulating ex-
pressions.

The NCTM Curriculum and Evaluatfon Standards
for School Mathematics (1989) present us with
the beginnings of an appropriate resolution to
this incoherence. One section in the Standards
is devoted to a central theme in secondary
mathematics: Functions (Standard 6 in "Cur-
riculum Standards for Grades 9-12").

The concept of function is an important
unhying idea in mathematics. Functions,
which are special correspondences between
the elements of two sets, arc common
throughout the curriculum. In arithmetic,
functions appear as the usual operations
on numbers . ; in algebra, functions are
relationships between variables that repre-
sent numbers; in geometry, functions re-
late sets of points to their images under
motions such as flips, slides, and turns;
and in probability, they relate events to
their likelihoods. (p. 154)

There is lively interest now in how students
come to understand functions, how well they
translate among symbolic, graphical, tabular,
and other representations of these functions;
and what role functions play in the overall
picture of a secondary mathematics education.

One underlying assumption of this paper, then,
Is that the concept of function can and should
be a central theme of the algebra curriculum. It
is clear that the notion of function is at the
foundation of elementary calculus, and a facile
understanding of and ability to use both graphi-
cal and symbolic representations of functions
are critical for work in almost all scientific

disciplines. Unfortunately, few high school
students (or even college students completing
calculus) are able to identify equivalence be-
tween algebraic and graphical representations
of functions, interpret graphs accurately, or
develop an intuitive understanding of func-
tions and their representation as graphs (Fey
1984; Clement 1985; Goldenberg 1987;
Goldenberg & Kliman 1990; Eisenberg & Dreyfus
1991).

The NCTM Standards (1989) also emphasize
thatin the shift towards developing students'
understanding of functions and their various
representationsappropriate uses of computers
and graphing calculators should be explored.

Computing technology provides tools, es-
pecially spreadsheets and graphing utili-
ties, that make the study of function con-
cepts and their applications accessible to
all students in grades 9-12.
The integation of ideas from algebra and
geometry is particularly strong, with
graphical representation playing an im-
portant connecting role. Thus, frequent
reference to graphing utilities will be found
throughout these standards; by this we
mean a computer with appropriate graph-
ing software. . . (p. 125)

But the Standards do not give us insight into
what °appropriate" graphing software might
be. Although there is widespread agreement
that computers can and should play a signifi-
cant role in a new algebra curriculum, there is
not similar agreement about what constitutes
effective uses of computers in the teaching and
learning of algebra. This is an important area for
future research, and this paper describes some
preliminary attempts to build and explore
software environments for studying algebraic
concepts which may inform future work. The
focus of this work has been on firnction and
representation.

"Function" and "Representation"

Functions may be described by a string of sym-
bols such as frx) = x2 - 3x + 6, represented by a
graph or table, explained in words, or imple-
mented as a computer procedure. Only such
manifestations are available for us to manipu-
late and study. Functions, themselves, are an
abstractionat the heart of the matter, but



invisible. It is likely that viewing functions
from more than one of these perspectives will
ultimately build a more robust concept than
can leadily be built from one perspective alone;
that assumption seems to be the basis of the
NCINI's position as stated above. Since it is too
time consuming or too limiting to create and
work with most representations by hand, com-
puters are necessary tools for fully interacting
with and manipulating multiple representations.

To make sense out of multiple representations
of a single underlying objectthe function
under considerationone must be able to
translate readily among the representations and,
more importantly, reconcile the different infor-
mation provided by the different representa-
tions so as to understand the common abstrac-
tion underlying all of them. Students' difficulty
in doing this is well attested (Clement 1982;
Kaput & Sims-Knight 1983, Eisenberg & Dreyfus
1991; Goldenberg & Kliman 1990).

Software tools that use multiple linked represen-
tations hold great potential for helping students
understand the concept of function. The use of
linked representationswhere changes in one
representation are automatically and immedi-
ately reflected in alternative representations
can contribute significantly to the develop-
ment of a flexible understanding of the notion
of function. This method can help students
learn to see these representations as alternative
views of the same underlying objectthe
function.

Of course, software alone will never bring about
major improvements in the teaching and
learning of algebra. No single ingredient, acting
alone, will suffice. However, software can con-
tribute to and support changes in teaching and
learning algebra. To do so, software must be
developed in the context of ongoing cognitive
research, must address teacher support needs,
and must be accompanied by materials and
activities that effectively draw upon the peda-
gogical principles of the tool.

The Many Facets of Curriculum Innova-
tion Involving Computers

At Education Development Center (EDC), an
early attempt at achieving this kind of integra-
tion was carried out in geometry, with The
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Geometric Supposer software (Schwartz
&Yerushalmy 1985-1991) and curriculum series
(Chazan & Houde 1989; Yerushalmy & Chazan
in press).1 The software has been accompanied
by project activities and teacher support mate-
rials, including video. All are designed to be part
of a comprehensive approach to m eeting teacher
and student needs. This approach has been
advocated by a variety of researchers (for ex-
ample, Dugdale 1981; Kelman et al. 1983; Fey
1984; Kaput 1986) and Is also embotiled in the
Visualizing Algebra software environments
veloped by me and my colleagues at EDC and
published by Sunburst Communications (Harvey
et al. 1989; Mark & Harvey 1990; Harvey et al.
1990).

These initial efforts have suggested the effec-
tiveness of integrating the following strands of
work as we rethink the way algebra is taught and
learned in secondary school classrooms:

conducting research on students' interpreta-
tion of, and interactions with, visual envi-
ronments for exploring functions
(Goldenberg & Harvey 1989-1991;
Goldenberg & KIlman 1990; Goldenberg
1988; Goldenberg et al. 1987)
developing multiple representation software
allowing students to manipulate functions
visually (Harvey et al. 1990; Harvey et al.
1989; Goldenberg Ez Harvey 1989-1991)
developing project-based curriculum mate-
rials approaching algebra learning visually
(Harvey et al. 1989; Goldenberg & Harvey
1989-1991)
working with teachers in high school class-
rooms to integrate these new approaches to
algebra teaching and learning into the exist-
ing curriculum (Ruopp 1990-1992)

This paper describes some of our research efforts
and findings, discusses some of the software
environments that grew out of this research,
and, finally, presents some examples of the
curriculum materials that are so critical for
successfully integrating software into the class-
room. Our efforts to work with teachers to assist
them in adapting to such new approaches are
discussed elsewhere (Chazan & Houde 1989;
Yerushalmy et a). 1990; Yerushalmy & Houde
1985).
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Some Lessons from the Research

While developing, testing, and refining our
algebra software, and in preparation for devel-
oping appropriate curr cular materials for use
with such software, we performed some basic
cognitive research involving students' interac-
tions with a variety of graphically based soft-
ware environments.2 Teachers, mathemati-
cians, and mathematics education specialists
helped analyze transcripts which recorded stu-
dents' work with software prototypes and algebra
activities designed specifically to elucidate some
of our conjectures about students' understand-
ings ard misunderstandings. While much of
this work is described in detail elsewhere
(Goldenberg & Kliman 1990; Goldenberg 1990;
Goldenberg 1988; Goldenberg 1987; Goldenberg
et al. 1987), included below are a few examples
of how the research informed the development
and revision of the software and led to new
insights into the design of curriculum and
teaching methods.

Our work has shown students to have some very
weak notionssometimes very incorrect no-
tionsof the function concept. These previous
conceptions often determine to a great extent
what students will see, or not see, when inter-
acting with visually based software.

For example, we have found that students'
perceptions when they view graphs may differ
from those of their teachers, and the strategies
with which students act on their perceptions are
often limited Orconfused (Goldenberg & Klim an
1990; Goldenberg 1990; Goldenberg 1988;
Goldenberg et 31. 1927). One example of this
perceptual confusion is described below.

When students look only at the symbolic
representation of a function such as a
second-order polynomial, they often eas-
ily recognize that the domain is unlimited:
any value may be plugged in for x and a
value for y may be com puted. On the other
hand, their visual impression of the graph
of the same function often takes prece-
dence over symbolic analysis and leads
students to reason .. . as if the domain is
bounded somewhere within the extremes
of the domain depicted in the graph. in a
graph such as the one in f the figure oppo-
site), x looks like" it will never grow be-
yond roughly ± 10. (Goldenberg 1988,
p. 162)

V-4

This is the kind of research finding that has
important implications for the design of edu-
cational graphing software and related curricu-
lum materials. In this case, it demonstrated the
need to place greater emphasis on scaling issues.
We took this into account as we designed The
Function Analyzer software, described in the next
section.

Perhaps the most important conclusion of our
research is that educational uses of graphing tools
place very different demands on the software
than scientific or engineering uses do.3 This is
to be expected. When engineers and scientists
use gra phers. they are often interested primarily
in the behavior of a particular function. Stu-
dents, too, must deal with particular functions,
but most of the educational value Is in the
generalizations students abstract from the par-
ticulars. The shape of -2x2 + 30x - 108 is of no
special educational consequence, but it may
serve as a data point about any of several broader
classes: a particular family of quadratics (for
example, ones that differ only in the constant
term); more generally all quadratics; still more
generally all polynomials; or even all functions.

This difference in purpose has particular im-
plications for the user interface. If software is
intended for student use, it must be easy to
modify functionsnot just through a general
editor of algebraic expressions, but through a
"smart" editor that understands the syntax of
the expression and allows a student easily to
find and increment or decrement some param-
eter in the expression. For example, when a
student is interested in exploring the role of the

-20 x2 x - 1
Illusion of Constrained Domain



linear coefficient in a function defined as
frx) = x2 - 6x + 3 a manipulation which, con-
ceptually, involves merely stepping up from -6
in incrementsa smart editor saves having to
attend to delete keys, spaces, signs, and poten-
tial typographical errors. All of our algebra
software tools allow for this kind of direct ma-
nipulation of coefficients In expressions, thereby
permftting students to devote more attention to
the nature of the experiment and ..5 outcome.

Our research also showed, however, that experi-
ments of this kind can lead to unexpected
confusions in a student's understanding of
function and, more specifically, the student's
emerging concept of vari able (Goldenberg 1988).
For students to interpret graphical representa-
tions of algebraic expressions correctly, they
must understand the meaning of the variable
and of the parameters of the function that
surround it (for example, coefficients in a
lolynomial). To the naive student, there is little

difference between the a, b, c, and x in the
definition frx) = ax2 + hx + c. All four letters'
values seem equally "variable." Yet, as the
function is defined, only x is its variable. Fur-
ther, when a student studies quadratics, this
form is a stand-in for an entire class of functions.
As students explore the effects ot varying the
values of a, b, and c on the graph of the function
frx)x2+bx+c, they are really studying not f(x),
whose variable, x, is numeric and whose output
is numeric, but some different kind of function,
F(a,b,c), whose three variables a. b, and c are
numeric and whose output (a particular qua-
dratic function) is visualized by its graph. The
concept of variable is already difficult for students
to learn; yet, here we see variables and constants
switching roles as students experiment with
graphing. Our latest software experiments at-
tempt to address these concerns by including
some new ways for students to interact with
graphical representations. This work is described
at the end of this paper in the section "New
Directions."

As noted earlier, any particular function is not
what algebra is about. Rather, it is only as
students abstract important features of whole
families of functions that they develop the kind
of knowledge and intuition on which they can
build. Helping students make such abstractions
is the role of th'.! teacher, assisted by appropriate
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curriculum materials. Consider the taskof help-
ing students to understand the essential notion
of variable when studying functions like
F(12) x2 + bx + 2 whose domain variable is a
real number but whose range elements are
themselves functions with both domain and
range in the real numbers. In the context of the
conventional curriculum, these new objects
function-valued functionsmay seem terribly
abstruse, but the ideas are apparently quite
natural and are even reflected in much of our
language. When we make statements like "ax2
+ 3 generates an upward-opening parabola with
its vertex above the origin when a is positive,"
we are, in effect, describing a non-numeric
"value° (the shape of the picture) of a function
of a. Curriculum and teaching approaches can
capitalize on such intuitive understandings.

In general, where the research we conducted
showed that capabilities provided by the com-
puter can lead to unexpected pitfalls In students'
understanding, we have tried both to take these
pitfalls into account in our software design and
to develop curriculum materials and identify
teaching strategies that address the pitfalls.

Software Environments for Studying the
Concept of Function

In collaboration with algebra teachers, math-
ematidans, cognitive researchers, and software
developers, we have designed several soff are
tools that use multiple linked representations.
In testing our software with students, we have
found reason to be optimistic that students can
acquire significantly deeper understandings of
the function concept by working more directly
with carefully designed visual representations
of functions. This sectfon describes three such
software tools and provides examples of their
use.

The Function Analyzer. The Function Analyzer
provides tools for the exploration and manipu-
lation of functions as expressions or graphs.
This software allows one to manipulate the
function expression or the function graph, ex-
amine the values of the function, plot points on
the coordinate plane, or change the scale of the
coordinate plane. Functions are plotted on
three related grids (figure 1, page 6): (1) the large
view on the left side of the screen, (2) the
"zoomed out" view on the upper right portion

sly
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Figure 1. The Function Analyzer.

of the screen, and (3) the "zoomed in" view on
the lower right portion of the screen. By pre.
senting each function at three different scales,
the software focuses attention on the importance
of scale in interpreting the graphical representa.
Hon.

One can use the software to plot a variety of
functions and then change them in a number of
ways. One can vary the symbolic parameters of

a function, for example, changing the -6 In the
function x2 - 6x + 3 to the values -6, -4, -2, 0, 2,
4, and 6. This generates a family of curves that
provides some insight into the role of the linear
term in the quadratic function. As the coefficient
of the linear term is varied, the parabola mom
up one side of the screen and then down the
other side, without changing shape. Figure 2
shows the results of this sequence of graphs.

-30

f CH) = 1H2.5).1.3

= H2.6,03

Increment: 2

4- -0 Increment Graph history (on)
Clear graphs

Figure 2. The family of functions, fb(x) = xi + bx + 3.
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We have been especially interested in allowing
students to manipulate representations of func-
tions other than symbolic ones. To this end, we
have designed the software to allow students to
manipulate function graphs directly by trans-
lating, stretching, and reflecting them. Trans-
lating a graph (figure 3, opposite) corresponds
in the symbolic world either to substituting x +
constant for x or to adding a constant to ffx).
Stretching a graph corresponds either to substi-
tuting ax for x or to multiplying /Ix) by a con-
stant. Reflecting a graph corresponds either to
substituting -x for x or to multiplying fiX) by -1.
These features allow students to explore func-
tions as mathematical objects that can be ma-
nipulated and acted upon rather than strictly as
processes that serve to generate values.

Of course it is important for students also to
recognize function expressions as recipes for
generating values. in an effort to more clearly
relate the values of x to the values of fix), and the
pair of values (x, rim to a point on the graph, the
software provides a table of values as a third
representation of function that is linked to the
graphical representation by both color coding
and a special bar on the graph (figure 4, below).
The values table displ a) s t he values for x, f(x), and
g(x). A vertical bar connecting the current x-
value with its corresponding function values is
displayed in the graph window.

#01) = (00-6)5)04-6).2)

,IMMQ 8: 2
Figure 3. Translating the graph of f(x) (x+.5)(x+2).

The Function Supposer. Whereas The Function
Analyzer is an environment in which students
can explore individual functions, their various
representations, and function families, a second
software environment The Function Supposer

allows students to compose new functions by
adding, subtracting, multiplying, and dividing
functions, both symbolically and graphically
(Harvey et al. 1990). For example, figure 5 (page
8) shows two functions being combined to form
a third function. The operation, in which
h(x) = f(x) g(x), is displayed both symbolically
and graphically.

40 f<H) 4 H)

\\*- 0 4 0
15 IS 1 1 -4

2 0 -9
3 1 -12
4 4 -16
5 9 -20

-40 6 16 -24

f CH) = H2 -hiN *it

goo = -4H

De I ta 8 : 1

De ta C fear a I I via Wes Mar k He fp
ii- -* Edit values table <Esc>

Figure 4. The display of function values.
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fuo = 2(8-1)
goo = 8-3
PICH) = 2(8-1)(8-3) -8
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8

f(8)

g04)

h(14

Figure 5. Building a new function in The Function Supposer.

in the past, operations on functions were al-
most universally taught and learned in environ-
ments that made use of symbolic representa-
tions only. Solving equations, factoring poly-
nomials, and finding roots of functions have
traditionally been thought of as topics to be
explored in a world of symbols. It is possible,
however, to develop new understandings of
these activities when they are examined in The
Function Supposer environment.

.

-9

-6

0

f(H) = 2,28-3

Figure 6.

Consider the function in figure 6 (above). When
students WC only at Its symbolic representa-
tion, 14) = x2 + 2x - 3, it is not immediately
oovious to them that (x-1) and (x+3) are factors
of this function. However, if they look at the
graph of the function and understand the sig-

nificance of the x intercepts, the factors are
more evident because the graph crosses the x
axis at x = 1 and x =-3. Even more convincing
evidence can be derived by overlaying the graphs
of the presumed futors (figure 7, below). Here
is visual meaning for the fact that (x-1)a nd (x+3)
are factors of this function. Note that the roots
of f(x) and g(x) match those of h(x). A function
h represented as a product of functions f and g
cannot have the value zero unless one of for g
has the value zero.

-8

-6

8

f(H) =
904) = H*3
hC8) = (8-1) 04.3)

Figure 7,

Similarly, one can take a graphical approach to
tactoring polynomials and gain new insights
into the behavior of functions. Consider, for
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f(H) = H3 -2H2 -5H*6

goo = H*4

h(H) = (83 -2X2 -5H*6)/(14*4)

Function
Dperation
Modify

,

-6

jo

-10

-6-

-10

10

Ualues Scale
Notepad 2oom
Copy Display

Figure 8. Dividing polynomials.

example, the function f(x) = x3 - 2x2 - 5x + 6.

Figure 8 (above) shows what happens when one
tiles to "factor" this by g(x) = x + 4. it is inter-
esting to note that the graph of the resulting
function, h, has the same three roots as the
original function, f. it is also noteworthy that
the function g does not have a root in common
with f. These and other features of these graphs
may be obvious to those with more mathemati-
cal expertise, but such observations can be quite
revealing for many students.

Another interesting exploration is to note the
relationships among the shapes of the graphs,
as well as their relative maxima and minima.
Students come to expect that when a cubic
polynomial is divided by a linear, the result
vught to look something like a quadratic. But in
the view shown in figure 8, the graph of h(x)
does not in fact look much like a quadratic.
Students can be encouraged to explore the causes
for the surprise appearance of h(x); such explo-
ration may lead them to conjecture that the
scale in figure 8 is hiding some of the important
detail of the graph of h(x).

It is interesting to ask how these graphs might
change as the divisor, g(x), gets closer and closer
to a factor of f(x). Figure 9 (page 10) shows an
image in which g(x) is a true factor.

goo

Mm.

h(H)

Help
Restarti
Quit

Notice again the relationships among the roots
of the functions under consideration. And no-
tice how the appearance of h(x) changed from
that in figure 8 (partially approxinnting a pa-
rabola as one looks further away frm the root
of g(x) at x = -4)4 to its parabolic appearance in
figure 9.

The Function Comparator. Also important in
the analysis of functions is an understanding of
functional comparison. Existing curricula
usually frame the study of functional compari-
son as the study of equations and inequalities,
and use problems in this area (usually of the
"solve for x" sort) to lead students to practice
symbol manipulation. An example might be:
"Find the set of all x that satisfy the comparison
x2-2> x." Students familiar with such problems
will successfully manipulate the symbol- and
find the solution set: (xl x < -1 or x > 2). While
practice may increase students' computational
fluency, it is not clear what insight they derive
from learning to solve such problems. My
colleague Judah Schwartz has proposed to keep
the function concept central to such problems
by reframing the proHem as a comparison of
two functions. !n this example we would inter-
pret the problem as the following comparison:
frx) >g(x) where f(x) = x2 - 2 and g(x) = x. Now,

12
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f(N) = H3 -2H2-5H.6
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Figure 9. Factoring a cubic.

Figure 10. Comparing functions.

when we graph f and g, the solution set is visu-
ally represented and may become more under-
standable: it is the set of all x where the values
of f(x) are greater than the values of g(x) (see
figure 10, above).

Curriculum Materials for Exploring the
Function Concept

Alongside the previously described software
tools, we have developed a set of classroom

materials that take advantage of the new oppor-
tunities for learning and teaching made avail-
able by the tools. We have developed these
materials with the aid of teachers interested in
encouraging their students to build mathemat-
ics ideas through group and individual project
work. Our goal has been not only to engage
students in interesting problem-solving activi-
ties, but also to engage students in interesting
problem-findingactivities. Mathematio is, after
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ail, more about learning to recognize worth-
while questions than it is about learning to
solve questions that have already been answered.
In designing these materials, we therefore asked,
How can we encourage students to ask interesting
mathematical questions and to defend and
discuss their mathematical ideas?

Our approach has been to provide teachers with
a variety of materials to motivate students to
engage in and discuss mathematics in the
classroom. The intent is to provide enough
structure in the activity so that explorations
carried out by students can be productivethat
is, contain important mathematical content
and also build on previously learned concepts
and skills. At the same time, we want students
to be raising at least as many questions based
upon their own observations as are raised ex-
plicitly in the materials themselves. The follow-
ing two examples suggest the range of materials
we have been creating.5

Example 1: Exploring Transformation Points.
The first project asks students to use their
knowledge about functions and transforma-
tions to complete a table relating function ex-
pressions, critical points, transformations, and
drawings of transformed function graphs. (See
Table 1, page 12, for examples from such a
table.) The objectives of this project are as
follows:

Explore how critical points in function graphs
change through various graph transforma-
tions. For example, do the roots of functions
change when the graph is stretched? trans-
lated?
Investigate the similarities and differences
in various graphical transformations.
Explore how different classes of functions
are affected by graphical transformations.
Practice translating between the graphical
and symbolic representations of functions.

The project first challenges students to fill in a
table, using The Function Analyzer as a tool to
assist them in their explorations, and then asks
them to discuss their findings. The table provides
sufficient structure for students to understand
the challenge they face; the software provides
sufficient support to help students find possible
solutions for the task at hand; and the class
discussion provides the opportunity for stu-

4

IMPROVING THE TEACHING AND LEARNING OF ALGEBRAA

dents to recognize that their particular line of
thought was not necessarily the same as that of
other students.

Commentary. This project can motiv stu-
dents to clarify their knowledge of ft, .ons
and transformations and requires them to think
about transformations in different ways. It
reinforces the relationships among the various
representations of functions: as expressions, as
tables of values, and as graphs.

Notice also that the project is designed to allow
many different possible solutions. In some
cases, there are no possible answers (for ex-
ample, in #2, there is no special invariant point
when translating -3x, and similarly in #7). The
project can lead a class into lively discussions in
which students generalize the effects of trans-
formations and the behavior of functions under
various graphical transformations. In particu-
lar, students can explore how points on a graph
are affected by translations, stretches, or flips
and, most importantly, come to understand
what aspects of a graph are invariant under such
transformations.

Even more important, however, are the new
questions students begin to raise (and then
explore) as they compare their approaches. For
example, in #6 students are provided with three
roots and are asked to make a sketch and find an
expression for a function having those three
roots. As students compare their sketches, they
find that not all are alike, but they also find that
the sketches tend to have some similarities. The
students' function expressions will also be dif-
ferent in some ways and similar in other ways.
New questions are raised about how many pos-
sible solutions there may be and whether In fact
there is a way (using parameters in the expres-
sion) to capture the entire family of solutions.6

Example 2: What's Missing? This second
problem asks students to complete a simple
table of calculations; but rather than using
numbers (or even algebraic expressions) as the
operands, student3 are asked to think about
combining graphical objects. The goals of this
project include the following:

Explu,,, how operations on functions, when
viewed graphically, affect the shapes of the
graphs.

liv



Table 1, Example 1: Exploring Transformation Points

0
Function

Expression
Points Transfor-

mation DrawingsValue 1 Position

1 x2 (0,0) WiMiliffirlikkhKVIim,dmem
-3x Translate

x 2)(x + 3) roots

(0,-7) r
intercept

(5,0)

Wan
(-5,0)
(0,0)
(7,0)

x-axis
reflection

10 any
to

11 l*

on

In the Points column, identify points on the function which do not change under the
transformation listed or implied by the drawing.

V12
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Learn to recognize transformations of graphs
as operations on the functions represented
by those graphs.
Investigate properties of graphical transfor-
mations by experimenting with their effects
on graphs.
Practice reading and manipulating graphs of
simple polynomials.

Students are asked to use their knowledge of
functions and binary operations to help their
find the missing element(s) in various graphs of
functional relationships.

In the examples in Table 2 on page 14, students
are asked to make predictions about the missing
information before they check their predictions
with The Function Supposer.

Commentary. This project is an unusual recasting
of the kinds of problems that are often found in
the present algebra curriculum. Consider how
the project would look if we took a more tradi-
tional approach:

Solve for h(x)
Complete the calculations in the

table below.

f(x) g(x)
-x x - 4 =

x2 + 2
x/2 2
x3 - x3 - 2x =

h(x)

In this form the intent of the problems isto have
the student exercise symbolic manipulation
skillsin effect, performing as an algebraic cal-
culator. Whatever increased skill may come of
such practice, little else is going on.

By contrast, in the visual alternative presented
earlier, the variety of strategies for thinking
about the problemsincluding strategies that
make use of symbolic manipulationskeeps
the problems rich. For example, a student
might think about problem #1 (f(x) g(x) = h(x))
in the following way:

The function h has to be zero when either
for g is zero, since h is the product of f and
g. Therefore, Ii must be zero twice. Be-
tween these two places both f and g are
negative; thus h must be positive. Given
that h is the product of two linear func-

IMPROVING THE TEACHING AND LEARNING OF ALGEBRA&

tions, I will conjecture that the graph of It
is an upside down parabola.

Problem #4 leads to even more interesting dis-
cussions and new questions. Some students will
s'T that frx) is a cubic and that h(x) is linear, and
therefore conclude that division is necessary.
But this reasoning presents a quandary because
dividing a cubic by something to get a linear
function requires that the divisor be quadratic.
And g(x) is certainly not quadratic. Other stu-
dents may reason that if h(x) Is linear and g(x) is
cubic, then, given division as the operation, //x)
must be a fourth-degree polynomial. Could this
be possible? That in itself is an interesting
discussion. And for all of these students some
problem-posing activities are suggested: how
could the problem be changed so that it can be
solved with division as the operation? In fact,
with the aid of The Function Supposer, some
students will find that subtraction does indeed
work as a solution to the problem.

New Directions

Our efforts to encourage and support curricu-
lum reform in algebra will continue to focus on
examining students' understandings, and mis-
understandings, of algebraic concepts and how
we might best use computer environments to
provide more visual approaches to mathemat-
ics learning. But it is increasingly clear that
reform of the algebra curriculum must be con-
sidered in the broader context of reform of the
entire secondary mathematics curriculum. We
see a strong connection between the dominance
of syntactic/linguistic, non-visual mathematics
instruction and the decontextualization of
mathematics learningthe fragmentation of
ideas, the answering of questions nobody has
asked, the learning of discrete and disconnected
facts and procedures, and the failure to see how
one mathematical idea relates to another. Tech-
niques out of context rarely mean much to
students, and are hard to apply to novel prob-
lems. The consequence: students who d )n't
like mathematics and students who cannot do
much with it.

Of course, mathematical visualization is not, by
itself, a solution. Tools for visualization are
often made so context specific that they con-
tribute to the isolation of mathematicl ideas.

16



*HARVEY

2

3

4

IFT-4

7.

F.-

$

f(x)

I
11

-el

$

f(x)

f(x)
IS.

I
$

-6.

f(x)

Table 2. Example 2: What's Missing?

*

+

6

..

-8,

e

g(x)

0)

o

.3 $

g(x)

,MIN,
Orel

i
MMII

-
AM..

4.10

Aar

h(x)

h(x)

h(x)

1 / 0

1 7

h(x)



Furthermore, visualization is not always easy.
We argue, however, that much of the difficulty
can be eliminated by building tools that provide
students with the right kind of dynamic control
over the visualizations they are using.

To this end, we are exploring an entirely new
kind of software environment in which we
introduce controlled dynamic phenomena. For
example, we have been pursuing ways to de-
velop students' understanding of function as
mapping, and in particular, mappings from R to
R. Most graphing software allows one to type in
a function expression (for example, fix) = x + 2)
and then graphs the specified function in the
real planethat is, in R2. However, the dy-
namic-interactive properties of computer in-
terfaces permit alternative graphical represen-
tations that offer different views of functional
vlationships. For example, instead of using the
traditional perpendicular system of axes for
graphing f(x) = x + 2, one can represent this
mapping from R to R on two parallel number
iines. With a single value of x plotted on one
number line, and its image, fix), plotted on the
other number line, a student can use a mouse to
move the x-value on its axis, causing the image,
f(x), to move simultaneously on its parallel axis
according to the functional relationship speci-
fied (see figure 11).7

n Line

1(H) Line I Oa a /11

Figure 11. Mapping x f(x) = x - 2 using a parallel
number line Dynagraph.

This kinesthetic approach to investigating func-
tions is a catalyst for new intuitions and under-
standings. The simple function IN) = x - 2 can
be teen more obviously as a "subtracting of 2"
from the value of x when investigated on the
parallel axes than when graphed in the usual R2
plane. Various calculus concepts such as limits
and rate of change become more directly ob-
servable. In fact, the behavior of functions with

(
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asymptotes, for example frx) 1/(1-x), can sup-
port dramatically new intuitions about infinity.
As a student moves the plotted x-value across
the asymptote boundary, its Image, fix), shoots
off the screen towards positive infinity and then
Instantly back onto the screen from negative
infinity. By moving the x-value back and forth
across this boundary, one gets the distinct im-
pression that positive and negative infinity are
"connected back there somewhere," thereby
encountering a rich topological idea.

The development of this kind of softwav allows
us to ask some other kinds of questions: What
do computers inspire us to do that we might not
have done before? What new questions can be
asked of students? What new options are
available for the sequence in which algebraic
skills or concepts are presented? What new
content becomes interesting to teach? How do
students misinterpret representations? Does
student interaction with the representation af-
fect these misinterpretations? What are the
effects of allow1n7 students to manipulate the
graphic representations directly?

It is imperative that we focus our attention on
how to engage more students in more math-
ematical inquiry and mathematical exploration
in the classroom. Although the teacher is cen-
tral to any such changes, we also need to pro-
vide teach2rs and students with new kinds of
materials, new tools, and new approaches.

Teachers and students need projects and prob-
lems that lend themselves to a multitude of
approaches and a variety of learning and teach-
ing styles. In addition, students must feel that
they can make progress on the project, can
perceive avenues to explore the problems, and
can find ways of assessing their progress. And
once a solution to a problem is found, that
should not necessarily be the end of the student's
investigation projects should lead not only to
many different kinds of solutions, but also to
otIt2r new projects.

That is, we want problems that lead more to
investigations than to answers. All too often
students work on problems that are best called
exercisesactivities designed to have students
apply previously learned techniques to ques-
tions that yield single correct answers. When
students have previously learned the relevant
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mathematics, they usually find such exercises
simplc; otherwise, they tnay find the exercises
impossible. Although there is certainly a place
for such mathematics exercises in the curricu-
lum, this approach alone will instill in students
only a dictionary knowledge of definitions, rules,
and arbitrary tricks.

There is a need for much more research with
individual students to help guide development
efforts, but we are convinced that the story line
for the algebra curriculum in grades 7 through
12 will ultimately have to be entirely rewritten.
The current curriculum was conceived of during
a time when paper and pencil were the only
technologies available in the mathematics
classroom. Now we are finding that with the use
of computers and calculators we can set more
ambitious goals than simply doing a better job
at teaching the old curriculum. We can begin to
formulate a mathematically rich and coherent
approach to teaching and learning algebra.
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Notes

1. This series of four programs provides tools for
introducing basic geometry concepts and for encour-
aging student investigation of the relationships among
geometric shapes, elements, and constructions. The
Geometric Supposers are designed for grades 8-12 and
include the preSupposer, Triangles, Quadrilaterals, and
Circles. A Problems and Projects curriculum guide is
published for each program. Other available mate-
rials include teaching guides for integrating the
software and project materials into commonly used
textbook curricula and a series of videotapes by
teachers. All materials are published by Sunburst
Communications, Pleasantville, N.Y.

V-1

2. The research reported here was conducted under
a subcontract from the Educational Technology Cen-
ter, Harvard Graduate School of Education, and was
funded in part by the United States Office of Educa-
tional Research and Improvement (Contract No. OEM
400-83-0041).

3. This message is detailed in Goldenberg, 1991.

4. This approximation to a parabola is even more
apparent when the obscured portions of h are made
visible at appropriate scales.

5. These materials are extracted from a number of
publications now distributed by Sunburst Commu-
nications. These include Visualizing Algebra: The
Function Analyzer, The Function Supposes: Explonstions
in Algebra, and Pmblems and Projects for The Function
Analyzer. Credit for these materials goes to June
Mark, Jim Hammerman, and Michal Yerushalmy.

6. In fact, all functions of the form frx) .7a(x+5)x(x-7)
have the three roots indicated. But while this family
of functions captures all the cubic polynomials that
have the three roots, there are infinitely many more
functionshigher-order polynomials or non-poly-
nomial functionsthat also have those roots.

7. Credit for this idea of parallel number lines as an
alternative to perpendicular axes goes to Phil Lewis.
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